Effectiveness of Interferential Current Therapy in the Management of Musculoskeletal Pain: A Systematic Review and Meta-Analysis

Article in Physical Therapy - September 2010

4 authors:

Jorge P Fuentes
University of Alberta
34 PUBLICATIONS 1,059 CITATIONS

Susan Armijo-Olivo
University of Alberta
102 PUBLICATIONS 2,353 CITATIONS

David J Magee
University of Alberta
66 PUBLICATIONS 2,187 CITATIONS

Douglas P Gross
University of Alberta
127 PUBLICATIONS 1,983 CITATIONS

Some of the authors of this publication are also working on these related projects:

Determinants of work participation in older workers: a systematic review of the quantitative literature View project

Conference: Safe, Healthy and Productive Workplaces: Learning from Research and Practice View project
Effectiveness of Interferential Current Therapy in the Management of Musculoskeletal Pain: A Systematic Review and Meta-Analysis

Jorge P. Fuentes, Susan Armijo Olivo, David J. Magee, Douglas P. Gross

Background. Interferential current (IFC) is a common electrotherapeutic modality used to treat pain. Although IFC is widely used, the available information regarding its clinical efficacy is debatable.

Purpose. The aim of this systematic review and meta-analysis was to analyze the available information regarding the efficacy of IFC in the management of musculoskeletal pain.

Data Sources. Randomized controlled trials were obtained through a computerized search of bibliographic databases (ie, CINAHL, Cochrane Library, EMBASE, MEDLINE, PEDro, Scopus, and Web of Science) from 1950 to February 8, 2010.

Data Extraction. Two independent reviewers screened the abstracts found in the databases. Methodological quality was assessed using a compilation of items included in different scales related to rehabilitation research. The mean difference, with 95% confidence interval, was used to quantify the pooled effect. A chi-square test for heterogeneity was performed.

Data Synthesis. A total of 2,235 articles were found. Twenty studies fulfilled the inclusion criteria. Seven articles assessed the use of IFC on joint pain; 9 articles evaluated the use of IFC on muscle pain; 3 articles evaluated its use on soft tissue shoulder pain; and 1 article examined its use on postoperative pain. Three of the 20 studies were considered to be of high methodological quality, 14 studies were considered to be of moderate methodological quality, and 3 studies were considered to be of poor methodological quality. Fourteen studies were included in the meta-analysis.

Conclusion. Interferential current as a supplement to another intervention seems to be more effective for reducing pain than a control treatment at discharge and more effective than a placebo treatment at the 3-month follow-up. However, it is unknown whether the analgesic effect of IFC is superior to that of the concomitant interventions. Interferential current alone was not significantly better than placebo or other therapy at discharge or follow-up. Results must be considered with caution due to the low number of studies that used IFC alone. In addition, the heterogeneity across studies and methodological limitations prevent conclusive statements regarding analgesic efficacy.
Interferential Current Therapy in Management of Musculoskeletal Pain

Successful management of musculoskeletal pain is a major challenge in clinical practice. One of the electrotherapeutic techniques used for managing musculoskeletal pain is interferential current therapy (IFC). The results of questionnaire surveys in England,1 Canada,2 and Australia3,4 have shown that IFC is widely used by diverse clinicians throughout the world.

Interferential current therapy is the application of alternating medium-frequency current (4,000 Hz) amplitude modulated at low frequency (0–250 Hz).5–7 A claimed advantage of IFC over low-frequency currents is its capacity to diminish the impedance offered by the skin.6 Another advantage speculated for IFC is its ability to generate an amplitude-modulated frequency (AMF) parameter, which is a low-frequency current generated deep within the treatment area.9–10 Several theoretical physiological mechanisms such as the “gate control” theory,11 increased circulation, descending pain suppression, block of nerve conduction, and placebo have been proposed in the literature to support the analgesic effects of IFC.5,8,12

Despite IFC’s widespread use, information about it is limited. A review of the literature reveals incomplete and controversial documentation regarding the scientific support of IFC in the management of musculoskeletal pain. For example, a systematic review about the use of electrotherapy for neck disorders13 excluded the analysis of IFC. Moreover, much of the IFC information is not written in English,10,14–22 and most articles appear to be based on case reports,23–25 clinical studies not including a randomization process,20,27 letters to the editor,28,29 clinical notes,30 experimental settings,31–37 descriptive studies,8,12,58,39 or experience in the field40,41 instead of methodologically qualified studies.

Thus, the objective of this systematic review and meta-analysis was to determine the analgesic effectiveness of IFC compared with control, placebo, or other treatment modalities for decreasing pain in patients with painful musculoskeletal conditions.

Method

Search Strategy
Relevant studies of IFC in musculoskeletal pain management from 1950 to February 8, 2010, were obtained through an extensive computerized search of the following bibliographic databases: MEDLINE (1950 through week 4 of 2010), EMBASE (1988 through week 5 of 2010), CINAHL (1970 through February 8, 2010), Scopus (1970 through February 8, 2010), Cochrane Library (1991 through the first quarter of 2010), ISI Web of Science (1970 through February 8, 2010), and PEDro (Physiotherapy Evidence Database) (1970 through February 8, 2010). The key words “interferential,” “interferential therapy,” “interferential current,” “musculoskeletal pain,” “electrotherapy,” “electroanalgesia,” “muscle pain,” “low back pain,” “shoulder pain,” “hip pain,” “knee pain,” “neck pain,” “osteoarthritis pain,” and “joint pain” were used in the search, including combinations of these words. For details regarding the search terms and combinations, see eAppendix 1 (available at ptjournal.apta.org). The literature search procedure was complemented by manually searching the bibliographies of the identified articles for key authors and journals.

Study Selection and Inclusion/Exclusion Criteria
Studies that met the following criteria were considered for inclusion: (1) randomized controlled trials (RCTs) from journal publications in the English language (because the clinical application of IFC often is based on its coadjutant effect, studies in which IFC was used as a cointervention also were included); (2) studies of male and female humans between 18 and 80 years of age; (3) studies of subjects clinically diagnosed with a painful musculoskeletal condition, such as muscle (eg, low back pain, neck pain), soft tissue (eg, tendinosis/tendinitis), or joint (eg, osteoarthritis) disorders; (4) regarding the type of interventions, all randomized comparisons of isolated or coadjutant IFC applications versus placebo, control, another physical therapy intervention, or another type of intervention; and (5) studies in which the outcome of interest was pain, as measured by the use of a visual analog scale (VAS) or numeric pain rating scale (NRS). Exclusion criteria for this study were: (1) studies based on animal data, (2) studies published in languages other than English, and (3) studies including subjects who were healthy in experimental settings.

Data Extraction and Quality Assessment
Two independent reviewers screened the abstracts of the publications found in the databases. The reviewers analyzed all articles initially selected by the abstract or title for the inclusion and exclusion criteria. Each criterion was graded on a yes/no basis. In case of discrepancies between reviewers regarding whether a particular article met a criterion, the ratings were compared and the
A critical appraisal was conducted to determine the methodological quality of the final selected studies. We used 7 scales (ie, Delphi List, PEDro, Maastricht, Maastricht-Amsterdam List, Bizzini, van Tulder, and Jadad) commonly used in the physical therapy field to evaluate the methodological quality of the included studies, compiled in a set of 39 items. These items were grouped into 5 categories: patient selection, blinding, intervention, outcomes, and statistics. Based on a recent systematic review, no one scale effectively determines the overall methodological quality of individual studies. For this reason, we used all of them in a compiled fashion.

The articles were evaluated on the basis of only the information available in the articles using the critical appraisal sheet (available at ptjournal.apta.org). For each item listed on the critical appraisal sheet, a score of 1 was given when the item was included in the article, and a score of 0 was given when the item was not included or the information provided by the authors was not sufficient to make a clear statement. In cases where the study did not consider a particular item, the item was marked as not applicable on the critical appraisal sheet. The scoring for each study was calculated by dividing the number of items included by the number of applicable items. Finally, each study was graded as having low, moderate, or high methodological quality based on how many items from the critical appraisal were met. The cutoff was determined as follows: 0–0.40 = low methodological quality, 0.41–0.70 = moderate methodological quality, and 0.71–1.00 = high methodological quality. This criterion was determined a priori to the quality assessment. Similar criteria for cutoffs have been used in correlational studies to determine reference values for quality of association or agreement.

The critical appraisal was independently completed by the 2 reviewers, and the results were compared. At this stage, the intraclass correlation coefficient (ICC) was calculated using SPSS version 17 software in order to determine the agreement between the reviewers for article grading. Any discrepancies were settled through discussion.

**Data Synthesis and Analysis**

Studies investigating similar outcomes and interventions and those providing clear quantitative data were grouped, evaluated for heterogeneity, and pooled, if possible. When combining outcome data was not possible, narrative, descriptive, and qualitative summaries were completed. In the present study, a meta-analysis was performed to quantify the pooled effect of IFC alone or as an adjunct treatment on pain intensity when compared with placebo, control group, or comparison intervention. Because the pooled effect was based on the results of the VAS or NRS, the mean difference was used to quantify the pooled effect. RevMan 5.0 software was used to summarize the effects (ie, pooled mean differences) and construct the

---

**The Bottom Line**

**What do we already know about this topic?**

Despite the widespread use of interferential current (IFC), information about its clinical effectiveness is limited and controversial. The pain-reducing effect of IFC, when applied alone or as part of a multimodal treatment plan to treat musculoskeletal pain, has not been determined.

**What new information does this study offer?**

The application of IFC as part of a multimodal treatment plan appears to produce a modest pain-relieving effect in a broad spectrum of acute and chronic musculoskeletal conditions when compared with no treatment or placebo. In addition, the potential long-term effects of IFC versus placebo observed at 3-month follow-up are of interest.

Interferential current alone was not significantly better than placebo and other interventions (ie, manual therapy, traction, or massage). However, heterogeneity across the included studies, along with methodological limitations identified in these studies, prevents conclusive statements regarding the analgesic efficacy of IFC.

**If you’re a patient, what might these findings mean for you?**

If you are seeking pain treatment, IFC could be potentially effective in reducing musculoskeletal pain; however, its application should be included as part of a multimodal treatment plan.
forest plots for all comparisons. For this analysis, the 95% confidence interval (CI) was used. A chi-square test for heterogeneity was performed \( (P < .10) \). If there was relative homogeneity, a fixed-effects model was used to pool data.45

**Results**

A total of 2,235 articles were found in the database search. Of these, 154 were selected as potential studies of interest based on abstract review (Fig. 1). After full article review, only 20 studies were deemed to fulfill the initial selection criteria.47–66 The kappa agreement between the reviewers in selecting articles after applying the inclusion and exclusion criteria was perfect at \( \kappa = 1.0 \). Seventy-seven studies were rejected after applying the inclusion and exclusion criteria. The primary reasons for exclusion from the study were: (1) the use of subjects who were healthy in an experimental setting;31–37,67–82 (2) descriptive studies in the form of case reports, dissertations, or clinical notes;8,12,23–25,30,38–41,69,83–96; (3) studies not published in the English language;10,14–22; (4) the absence of pain outcomes;97–105; (5) randomized trial not used;26,27,106–108; (6) use of a current other than IFC;109,110; (7) use of animal data;111; and (8) unavailability of the full text of the article.112–114 At the end of the critical appraisal stage, there was an agreement of \( \kappa = .83 \) between the 2 raters. This ICC value is considered as "excellent" agreement according to the approach described by McDowell.115

**Characteristics of the Studies**

All 20 studies reviewed in detail were RCTs that examined the pain-reducing effectiveness of IFC. These studies analyzed the effects of IFC for several diagnoses considered to be either acute or chronic painful conditions. Only 6 articles (30%)48,54,56,57,61,63 examined the clinical analgesic effectiveness of IFC as a single therapeutic modality. The rest of the articles included the application of IFC as a cointervention along with other therapeutic alternatives such as exercise,47,49,53,58–60,64–66 short-wave diathermy,51,59 hot packs,55,60 ice,58 myofascial release,55 neuromuscular electrical stimulation,52 infrared radiation,51 and ultrasound.50,60,62 Details of the studies’ characteristics are shown in Table 1.

**Methodological Quality of the Studies**

The results of the critical appraisal for the selected studies are presented in Table 2. Three of the 20 studies were considered to be of high methodological quality, 14 studies were considered to be of moderate quality, and 3 studies were considered to be of poor quality. Even though the quality of most of the studies was rated as acceptable (17 studies were rated as being of moderate or high quality), there are some points regarding quality that need to be highlighted. Study flaws regarding patient selection were mainly related to description and appropriateness.
### Table 1. Characteristics of the Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Condition</th>
<th>Sample</th>
<th>Study Arms</th>
<th>Outcomes</th>
<th>Cointerventions</th>
<th>Follow-up</th>
<th>Treatment</th>
<th>Results</th>
<th>Strengths/Weaknesses</th>
</tr>
</thead>
</table>
| Quirk et al, 1985      | England   | Knee OA         | 38     | 1. Active IFC + exercises 2. Active SWD + exercise 3. Exercises | ROM, pain (VAS), exercise endurance, maximum knee girth                    | Exercises       | 3 and 6 mo   | 12 patients in the IFC + exercise group, 12 patients in the SWD + exercise group, and 14 patients in the exercise group | • Significant improvement in groups 1, 2 and 3 \( (P < 0.02, P < 0.05, P < 0.03, \) respectively)  
• No significant difference among groups  | Randomized  
• Confounders not controlled  
• Reliability and validity of outcomes not reported  
• Small sample size  
• No control/placebo group included  
• Poor description of intervention |
| Adebayo et al, 2002    | Nigeria   | Knee OA         | 30     | 1. Active IFC 2. Placebo IFC                               | Pain (VAS)                                                                | Exercises       | None         | 15 patients in IFC group and 15 patients in the placebo group            | • Significant difference between initial and final pain rating in both groups \( (P < 0.01) \)  
• Significance difference between 2 groups after treatment \( (P < 0.01) \). Pain rating was found to be significantly better in the active IFC group than in the placebo group. | Randomized  
• Clinicians blinded  
• Good control of confounders  
• Good description of intervention  
• Small sample size  
• Validity of outcomes not reported |
| Adebayo et al, 2003    | Nigeria   | Knee OA         | 51, 5 were excluded from the analysis | 1. IFC + 2. TENS + exercise 3. Exercise alone | Functional disability (WOMAC), pain (10-point pain rating scale)          | Exercises       | None         | 15 patients in the TENS + exercise group, 16 patients in the IFC + exercise group, and 15 patients in the exercise only group | • Significant time effect in WOMAC and pain scores \( (P < 0.01) \)  
• No significant difference between groups in WOMAC and pain scores \( (P = 0.241, P = 0.813) \)  
• All treatment protocols led to significant reductions in pain and improvement in function | Randomized  
• Clinicians blinded  
• Sample size calculated \( a \) priori and adequate  
• Good description of intervention  
• Confounders not controlled  
• No control/placebo group included  
• Reliability of outcomes not reported |
| Defrin et al, 2005     | Israel    | Knee OA         | 62     | 1. Active IFC noxious stimulus unadjusted 2. Active IFC noxious stimulus adjusted 3. Active IFC innocuous stimulus unadjusted 4. Active IFC innocuous stimulus adjusted 5. Placebo IFC 6. Control | Pain intensity (VAS), pain relief (0–100%), morning stiffness (10-cm line scale), active ROM (goniometer), electrically induced pain threshold (interferential current equipment) | None            | None         | 11 patients in group 1, 11 patients in group 2, 12 patients in group 3, 11 patients in group 4, 9 patients in the placebo group, 8 patients in the control group | • Significant improvement in groups 1 to 4 compared with the control group \( (P < 0.001) \)  
• Significantly larger decrease in noxious groups (1 and 2) for pain intensity \( (P < 0.05) \) and pain thresholds \( (P < 0.01) \) when compared with innocuous groups (3 and 4)  
• No significant difference between adjusted and unadjusted groups \( (P = 0.47) \) | Randomized  
• Good description of intervention  
• Small sample size  
• Confounders not controlled  
• Reliability and validity of outcomes not reported  
• Control and placebo groups included |

(Continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Condition</th>
<th>Sample</th>
<th>Study Arms</th>
<th>Outcomes</th>
<th>Cointerventions</th>
<th>Follow-up</th>
<th>Treatment</th>
<th>Results</th>
<th>Strengths/Weaknesses</th>
</tr>
</thead>
</table>
| Atamaz et al., 2006   | Turkey    | Knee OA              | 43, 2 dropped out at discharge | 1. Active IFC + IR + SWD 2. Intra-articular hyaluronan | Movement (ROM), pain (VAS), and function (SF-36, WOMAC, 15 min walking time) | IR and SWD      | 1, 3, 6, 9 and 12 mo | - 40 patients in the hyaluronan group (20 NaHA, 20 hyalan) and 42 patients in the physical therapy group  
- Treatment applied 5 times a week for 3 wk with a series of IR, SWD, and interferential therapy | Significant improvement in WOMAC, SF-36, and pain scores in both groups (P<.05)  
- Significant difference for pain at rest, pain on touch, and SF-36 in favor of physical therapy group at 1, 3, and 6 mo (P<.05)  
- Significant difference in WOMAC scores in favor of hyaluronan group (P<.05) | Randomized  
Clinicians blinded  
Small sample size  
No description of physical therapy interventions  
Confounders not controlled  
Reliability and validity of outcomes not reported  
No control/placebo group included |
| Burch et al., 2008    | United States | Knee OA     | 116, 15 dropped out at discharge | 1. IFC + NMES 2. Low-current intensity TENS | Pain and knee function (WOMAC), pain intensity (VAS), quality of life (VAS) | NMES None | None | - 57 patients in the IFC + NMES group; 59 patients in the low-current TENS group  
- 15 min of true IFC (5 KHz with a beat sweep frequency of 1–150 Hz) followed by 20 min of NMES  
- 5 times a week for 8 wk | IFC + NMES group reduced pain and increased function compared with low-current intensity TENS  
The IFC + NMES group had a significantly greater decrease in overall pain VAS (P=.038) | Multicenter RCT  
Clinicians blinded  
Adherence tested  
Sample size calculated a priori and appropriate  
No true control/placebo group included  
Confounders well controlled  
Adverse effects reported  
Reliability of outcomes not reported |
| Werners et al., 1999  | Germany   | Chronic LBP | 152, 20 were lost at 3-month follow-up | 1. Active IFC 2. Lumbar traction + massage | Disability (Oswestry Disability Index), pain (VAS) | None 3 mo | 74 patients in the IFC group and 73 patients in the traction group  
- 2 electrodes placed paravertebrally in pain area, frequency of 30–60 Hz, six 10-min sessions over 14–21 d | Significant improvement in both groups (P<.05)  
No significant difference between groups | Randomized  
Sample size calculated a priory and appropriate  
Confounders not controlled  
Reliability and validity of outcomes not reported  
No control/placebo group included |
| Hurley et al., 2001   | Northern Ireland | Acute LBP  | 60, 12 dropped out at 3-month follow-up | 1. Active IFC 2. Manipulative therapy 3. IFC + manipulative therapy | Pain (PRQ), disability (RMDQ), generic health status (EQ-5D) | None 3 mo | 18 patients in the painful area group  
- 22 patients in the spinal nerve group  
- 20 patients in the control group  
- 2 electrodes, carrier frequency of 3,850 Hz, frequency of 140 Hz, 30 min  
- 2–3 treatment sessions weekly until discharge | Significant improvement in pain severity, disability and health status for all groups at discharge (P<.05)  
Significantly greater RMDQ score in spinal nerve group (P=.042) | Randomized  
Good description of treatment  
Small sample size  
Confounders not controlled  
Clinical significance reported  
Reliability and validity of outcomes not reported |
| Hurley et al., 2004   | Northern Ireland | Acute LBP  | 240, 82 lost at 12-mo follow-up | 1. Active IFC 2. Manipulative therapy 3. IFC + manipulative therapy | Functional disability (RMDQ), pain (VAS, MPQ), quality of life (EQ-5D, SF-36), LBP recurrence, work absenteeism, analgesic consumption, additional health care | None 6 and 12 mo | 52 patients in the MT group, 55 patients in the IFC group, and 51 patients in the MT + IFC group  
- 2 electrodes on spinal painful area, frequency of 8 Hz, carrier frequency of 3,850 Hz, frequency of 140 Hz, 30 min  
- 4 to 10 sessions over a period of 8 wk | Significant improvement in all groups at discharge, 6 mo, and 12 mo (P<.05)  
No significant difference between groups (P<.05) | Randomized  
Assessors blinded  
Good description of treatment  
Sample size calculated a priori and appropriate  
Adverse effects reported  
Clinical significance reported  
Reliability and validity of outcomes not reported |
### Table 1. Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Condition</th>
<th>Sample</th>
<th>Study Arms</th>
<th>Outcomes</th>
<th>Cointerventions</th>
<th>Follow-up</th>
<th>Treatment</th>
<th>Results</th>
<th>Strengths/Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lau et al, 2008</td>
<td>Hong Kong</td>
<td>Acute LBP</td>
<td>110, 6 lost at 6-mo follow-up</td>
<td>1. IFC + medication + education + mobility and walking training 2. Walking training (control group)</td>
<td>Pain (NRS), satisfaction (Numeric Global Rating of Change Scale), disability (RMDQ)</td>
<td>Education, medication, mobility, and walking training</td>
<td>1, 3, and 6 mo</td>
<td>• 55 patients in the physical therapy group and 55 patients in the control group 4 suction-type electrodes applied around the painful area, sweep frequency 70–130 Hz, intensity just below the pain threshold, 15 min 1 or 2 sessions over a 24-hr period</td>
<td>• Significant decrease in pain (P = 0.001) and increase in satisfaction at discharge from the accident and emergency department  • No significant difference between groups (a = 0.25) at 1, 3, and 6 mo follow-ups</td>
<td>• Randomized  • Allocation adequate  • Assessors blinded  • Sample size calculated a priori  • Intention-to-treat analysis included  • High follow-up adherence  • No placebo group included  • Homogeneity of subjects uncertain</td>
</tr>
<tr>
<td>Adedoyin et al, 2005</td>
<td>Nigeria</td>
<td>Chronic LBP</td>
<td>39</td>
<td>1. Active IFC swing pattern 1 integral 1 2. Active IFC swing pattern 6 integral 6 3. Active IFC swing pattern 6 wedge 6</td>
<td>Pain intensity (Verbal Semantic Differential Scale)</td>
<td>None</td>
<td>None</td>
<td>• 13 patients in the 1/1 group, 13 patients in the 6/6 group, 13 patients in the 6 wedge 6 groups 2 electrodes (spinal nerve root correspondence to painful area), frequency of 100 Hz for burst group, sweep set between 50 and 100 Hz for the 6/6 and the 6 wedge 6 groups, carrier frequency of 4,000 Hz in the channel, channel 2 set to fluctuate between 4,050 and 4,100 Hz 2 treatment sessions daily for 2 times a week</td>
<td>• Significant decrease in pain over time (P &lt; 0.05)  • No significant effect between groups (P = 0.063)</td>
<td>• Randomized  • Patients blinded  • Good description of treatments  • Small sample size  • No control group  • Confounders not controlled  • Validity and reliability of outcomes not reported</td>
</tr>
<tr>
<td>Zambito et al, 2006</td>
<td>Italy</td>
<td>Chronic LBP</td>
<td>120</td>
<td>1. Active IFC 2. Active horizontal therapy 3. Sham horizontal therapy</td>
<td>Functional questionnaire (Badill), pain (VAS), analgesic consumption</td>
<td>Exercise, analgesic medication</td>
<td>1 and 3 mo</td>
<td>• 45 patients in the active IFC group, 45 patients in the active horizontal therapy group, and 30 patients in the sham horizontal therapy group 4 electrodes on a standard dermatomal pattern; frequency of 200 Hz, 10 min 5 sessions weekly for 2 wk</td>
<td>• At discharge, significant and similar improvement in both the VAS and Badill score was reported in all 3 groups (P &lt; 0.05)  • The function and VAS scores continued to improve at 3 mo in the active groups compared with control (placebo) group (P &lt; 0.01)</td>
<td>• Randomized  • Sample size calculated a priori and adequate  • Double blind approach  • Validity and reliability of outcomes not reported  • Moderate description of treatment</td>
</tr>
<tr>
<td>Zambito et al, 2007</td>
<td>Italy</td>
<td>Chronic LBP</td>
<td>115</td>
<td>1. Active IFC 2. Active horizontal therapy 3. Sham horizontal therapy</td>
<td>Functional questionnaire (Badill), pain (VAS), analgesic consumption</td>
<td>Exercise, analgesic medication</td>
<td>1 and 3 mo</td>
<td>• 35 patients in the active IFC group, 35 patients in the active horizontal therapy group, and 35 patients in the sham horizontal therapy group 4 electrodes on a standard dermatomal pattern, frequency of 200 Hz, 30 min 5 sessions weekly for 2 wk</td>
<td>• At discharge, significant and similar improvement in both the VAS and Badill score was reported in the 2 active groups at weeks 6 and 14 compared with the control (placebo) group (P &lt; 0.01)</td>
<td>• Randomized  • Sample size calculated a priori and adequate  • Double blind approach  • Validity and reliability of outcomes not reported  • Moderate description of treatment</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Condition</td>
<td>Sample</td>
<td>Treatment</td>
<td>Follow-up</td>
<td>Outcomes</td>
<td>Consequence</td>
<td>Sample</td>
<td>Strengths/Weaknesses</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>van der Heijden et al, 1999</td>
<td>The Netherlands</td>
<td>Unspecified shoulder soft tissue condition</td>
<td>180, 1 dropped out at 12 mo follow-up</td>
<td>1. Active IFC/H11001 2. No IFC/H11001 3. Sham IFC/H11001</td>
<td>3, 6, 9, and 12 mo</td>
<td>Recovery, functional status (SDQ), chief complaint, pain (VAS), clinical status, ROM (goniometer)</td>
<td>34 patients in the US group, 35 patients in the dummy US group, 32 patients in the Sham US group, 33 patients in the dummy Sham US group, 32 patients in the Sham Sham US group, 32 patients in the dummy Sham Sham US group</td>
<td>Randomized, Patients and assessors blinded, Clinical significance reported, Sample size calculated a priori and adequate, Good description of treatment method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taskaynatan et al, 2007</td>
<td>Turkey</td>
<td>Bicipital tendinitis</td>
<td>47</td>
<td>1. IFC/H11001 US/hot packs/exercises 2. Steroid iontophoresis/H11001 US/hot packs/exercises</td>
<td>1 mo</td>
<td>Pain (VAS), ROM (goniometer), patient satisfaction (NRS), disability (function section of the Pennsylvania Shoulder Scale)</td>
<td>21 patients in the IFC group, 26 patients in the steroid iontophoresis group</td>
<td>Statistical significant improvement at discharge and 1-mo follow-ups in the steroid iontophoresis group (P &lt; .05), Less dramatic improvement was reported for the IFC group at discharge and 1-mo follow-up (P &lt; .05)</td>
<td>Randomized, Assessors blinded, Poor description of interventions, Validity and reliability of outcomes not reported, Adverse effects reported, No dropouts reported</td>
<td></td>
</tr>
<tr>
<td>Cheing et al, 2008</td>
<td>Hong Kong</td>
<td>Frozen shoulder</td>
<td>74, 4 dropped out at 8-mo follow-up</td>
<td>1. Active IFC 2. Active electro-acupuncture 3. Control</td>
<td>Exercise 1, 3, and 6 mo</td>
<td>Shoulder function (Constant Murley Assessment Score), pain (VAS)</td>
<td>24 patients in the IFC group, 25 patients in the electro-acupuncture group, 25 patients in the control group</td>
<td>Both active groups showed a significant improvement compared to the control group, and no significant difference between the 2 active groups (P &lt; .05)</td>
<td>Randomized, Patients and assessors blinded, Reliability and validity of outcomes moderately reported, Good description of treatment protocols</td>
<td></td>
</tr>
</tbody>
</table>

**Table 1.** Interferential Current Therapy in Management of Musculoskeletal Pain

(Continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Condition</th>
<th>Sample</th>
<th>Study Arms</th>
<th>Outcomes</th>
<th>Cointerventions</th>
<th>Follow-up</th>
<th>Treatment</th>
<th>Results</th>
<th>Strengths/Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hou et al., 2002</td>
<td>Taiwan</td>
<td>Cervical myofascial</td>
<td>71</td>
<td>1. Hot pack, active ROM group</td>
<td>Index of change in pain threshold (algonometer), pain tolerance (algonometer), pain (VAS), and cervical ROM (goniometer)</td>
<td>Hot pack, active ROM, myofascial release</td>
<td>None</td>
<td></td>
<td>• Significant improvement in all groups (P &lt; 0.05)</td>
<td>• Randomized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pain</td>
<td></td>
<td>2. Hot pack, active ROM, ischemic compression group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Groups B2, B3, B4, B5, and B6 had significantly larger improvement than group B1 (P &lt; 0.05)</td>
<td>• Good description of treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Hot pack, active ROM, ischemic compression, TENs group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Groups B3, B5, and B6 had significantly larger improvement than group B2 (P &lt; 0.05)</td>
<td>• Sample size calculated a priori</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Hot pack, active ROM, stretch group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Group B6 had significantly larger improvement than group B4 (P &lt; 0.05)</td>
<td>• No control/placebo group included</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. Hot pack, active ROM, stretch, TENs group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• No significant difference among groups B3, B5, and B6</td>
<td>• Reliability and validity of outcomes not reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6. Hot pack, active ROM, IFC, myofascial release group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Almeida et al., 2003</td>
<td>Brazil</td>
<td>Fibromyalgia</td>
<td>40</td>
<td>1. Active IFC + US</td>
<td>Pain (body map, VAS), tender points, (tender point threshold), polysomnography, sleep questionnaire</td>
<td>US</td>
<td>None</td>
<td></td>
<td>• Significant reduction in pain intensity and painful areas in the combined therapy group (P &lt; 0.001)</td>
<td>• Randomized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Placebo IFC + US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Carrier frequency of 4,000 Hz, frequency of 100 Hz, intensity in the tactile sensation, 12 sessions for 4 wk</td>
<td>• Very low adherence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• No significant difference in sham treatment group</td>
<td>• Missing data 57.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Reliability and validity of measurement not reported</td>
<td></td>
</tr>
<tr>
<td>Taylor et al, 1987</td>
<td>United States</td>
<td>Chronic jaw pain</td>
<td>40</td>
<td>1. Active IFC</td>
<td>Jaw pain (VAS), function (maximum vertical jaw opening)</td>
<td>None</td>
<td>None</td>
<td></td>
<td>• Significant improvement in both groups for pain and maximal vertical jaw opening</td>
<td>• Randomized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Placebo IFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• No significant difference between groups (P &gt; 0.05)</td>
<td>• Patients blinded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Randomization used</td>
<td>• Confounders not controlled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Small sample size</td>
<td>• Reliability and validity of outcomes not reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Good description of treatment</td>
<td>• Small sample size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Good description of treatment</td>
<td>• Good description of treatment</td>
</tr>
<tr>
<td>Jait et al., 2003</td>
<td>United States</td>
<td>Postoperative knee pain</td>
<td>87</td>
<td>1. Active IFC</td>
<td>Postoperative edema, pain (VAS), pain medication, ROM (goniometer)</td>
<td>Ice, exercises</td>
<td>None</td>
<td></td>
<td>• Significantly less pain and greater ROM for the active IFC in all groups at all time points (P &lt; 0.05)</td>
<td>• Randomized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Placebo IFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Assessor blinded</td>
<td>• Good description of treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Reliability and validity of outcomes not reported</td>
<td>• Small sample size</td>
</tr>
</tbody>
</table>
of the randomization procedure and concealment of allocation, with only 9 and 5 of the studies meeting these criteria, respectively. Items related to blinding were not achieved by the majority of the studies. Only 3 of the studies used a double-blinded design.

Testing subjects’ adherence to intervention or having adequate adherence was another issue that was not accomplished by many studies (only 8 and 6 studies, respectively). Furthermore, adverse effects were reported in only 3 of the studies, and none of the studies provided details of the follow-up period.

Despite the fact that the adequate handling of dropouts is considered an important method used to prevent bias in data analysis, only 11 of the analyzed studies included information regarding the rate of withdrawals/dropouts. The outcome measures were not described well in terms of validity, reliability, or responsiveness.

Regarding statistical issues, it was uncertain whether sample size was adequate in 15 of the studies. Intention-to-treat analysis was used only in 11 of the studies. Finally, it also was unclear whether extraneous factors such as equipment calibration or medications during the study could affect the treatment responsiveness for IFC. For example, only 2 studies (10%) reported that the IFC equipment was calibrated during the study procedure.

**IFC and Type of Pain Management**

The effect of IFC has been studied predominantly in patients with chronic painful conditions (16 of 20 trials examined). These conditions included knee osteoarthritis, chronic low back pain, shoulder soft tissue pain, fibromyalgia, and myofascial syndrome pain. In contrast, the analysis of IFC in acute pain included just 4 articles, 3 of them related to acute low back pain and 1 to postoperative knee pain.

**Meta-analysis Results**

Fourteen studies were included in the meta-analysis (Fig. 1), with an overall sample size of 1,114 patients. Six studies were excluded for the following reasons: information regarding data variability (ie, mean and standard deviation) was not present, the unit of variability included was different than the standard deviation (ie, interquartile range, median), the comparison included in the trial was not relevant for the study’s purpose, and the interventions included in the trial were too heterogeneous (ie, IFC, infrared radiation, shortwave diathermy, and 2 drugs [sodium hyaluronate and hylan G-F 20]).

The 14 selected studies were chosen because they provided complete information on the outcomes evaluated and homogeneity regarding outcome measures. Of these studies, 4 studies addressed the analgesic effect of IFC alone and 10 studies evaluated the effect of IFC applied as adjunct in a multimodal treatment protocol. In addition, of these 14 studies, 3 studies compared the effectiveness of IFC with a control group, 6 studies investigated IFC against placebo, and 7 studies compared IFC with another intervention such as manual therapy or exercise.

**Comparison 1: IFC Alone Versus Placebo Group on Pain Intensity at Discharge**

Two studies were included in this comparison. One study measured outcomes at discharge after 2 to 3 weeks of treatment, and the other study measured outcomes after 8 weeks. One trial studied the effect of IFC on acute low back pain, and the other trial studied the effect of IFC on chronic low back pain. Both studies were of moderate methodological quality. In this comparison, both studies agreed that IFC was not significantly better than manual therapy or traction and massage (Fig. 3). The pooled MD obtained for this analysis was −0.16 (95% CI = −0.62, 0.31). These results indicate that IFC alone was not significantly better than placebo at discharge.

**Comparison 2: IFC Alone Versus Comparison Group on Pain Intensity at Discharge**

Two studies were included in this comparison. One study measured outcomes at discharge after 2 to 3 weeks of treatment, and the other study measured outcomes after 8 weeks. One trial studied the effect of IFC on acute low back pain, and the other trial studied the effect of IFC on chronic low back pain. Both studies were of moderate methodological quality. In this comparison, both studies agreed that IFC was not significantly better than manual therapy or traction and massage (Fig. 3). The pooled MD obtained for this analysis was −0.16 (95% CI = −0.62, 0.31). These results indicate that IFC alone was not significantly better than any of the comparisons at discharge from therapy.

**Comparison 3: IFC as a Supplement to Another Treatment Versus Control Group on Pain Intensity at Discharge**

Three studies were included in this comparison. Two studies used a 4-week discharge period, and one study used a one-day discharge period. One trial studied the effect of IFC on knee osteoarthritis, another trial studied the effect of IFC on frozen shoulder, and the third tri-
### Table 2.
**Methodological Quality of the Studies**

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient Selection</th>
<th>Blinding</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>Selection Method</td>
<td>Blinding</td>
<td>Intervention</td>
<td>Outcome</td>
<td>Statistic</td>
</tr>
<tr>
<td>Adedoyin et al, 47 2002</td>
<td>0 1 0 0</td>
<td>1 1 0 0</td>
<td>1 1 0 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Adedoyin et al, 48 2005</td>
<td>1 1 0 0</td>
<td>1 0 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Adedoyin et al, 49 2005</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Almeida et al, 50 2003</td>
<td>1 1 1 0</td>
<td>0 0 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Almeida et al, 51 2006</td>
<td>1 1 0 0</td>
<td>1 0 0 0</td>
<td>1 1 0 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Burch et al, 52 2008</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Cheing et al, 53 2008</td>
<td>1 1 1 0</td>
<td>1 0 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Defrin et al, 54 2005</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Hou et al, 55 2002</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Hurley et al, 56 2004</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Hurley et al, 57 2001</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Jarit et al, 58 2003</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Lau et al, 59 2008</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Taskaynatan et al, 60 2007</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Zambito et al, 61 2007</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Zambito et al, 62 2006</td>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0</td>
<td>n/a n/a n/a n/a 1 1 0 0</td>
</tr>
<tr>
<td>Accomplished items</td>
<td>19 19 20</td>
<td>9 3 13 13</td>
<td>3 7 11 9</td>
<td>2 0</td>
<td>1 1 9 13 13 11 8 6 11 9 8 3 0 10 12 20 14 19 6 1 5 20 16 19 10 5 20 11</td>
</tr>
<tr>
<td>Total percentage</td>
<td>95 95 100</td>
<td>41 24 68</td>
<td>15 35 55</td>
<td>45 10 0</td>
<td>85 60 65 35 55 40 30 79 64 37 15 0</td>
</tr>
</tbody>
</table>

**Notes:**
- 1: Eligibility criteria;
- 2: Randomized;
- 3: Randomization performed;
- 4: Randomization described as appropriate;
- 5: Randomization concealed;
- 6: Baseline comparability;
- 7: Double blind;
- 8: Blinding described as appropriate;
- 9: Blinding of investigator/assessor;
- 10: Blinding of subject/patient;
- 11: Blinding of therapist;
- 12: Blinding of the outcome (results);
- 13: Treatment protocol adequately described for the treatment and control groups;
- 14: Control and placebo adequate;
- 15: Cointerventions avoided or comparable;
- 16: Cointerventions reported for each group separately;
- 17: Control for cointerventions in design;
- 18: Testing of subject adherence;
- 19: Adherence acceptable in all groups;
- 20: Description of withdrawals and dropouts;
- 21: Withdrawals/dropouts rate described and acceptable;
- 22: Reasons for dropouts;
- 23: Adverse effects described;
- 24: Follow-up details reported;
- 25: Follow-up period adequate;
- 26: Short follow-up performed;
- 27: Timing of outcomes comparable in all groups;
- 28: Description of outcome measures;
- 29: Relevant outcomes included;
- 30: Validity reported for main outcome measure;
- 31: Responsiveness reported for main outcome measure;
- 32: Reliability reported for main outcome measure;
- 33: Use of quantitative outcome measures;
- 34: Descriptive measures reported for the main outcome; 35: Appropriate statistical analysis included; 36: Sample size calculated a priori; 37: Adequate sample size; 38: Sample size described for each group; 39: Intention-to-treat analysis included; n/a = not applicable.
al studied the effect of IFC on acute low back pain. Two studies included in this comparison were of moderate methodological quality, and one study was considered to be of high quality. In this comparison, the 3 studies tended to significantly favor IFC applied as a cointervention when compared with the control group (Fig. 4). The pooled MD obtained for this analysis was 2.45 (95% CI = 1.69, 3.22). Thus, IFC applied as a cointervention was more than 2 points better, as measured with the VAS, in reducing pain intensity when compared with a control group in these conditions.

**Comparison 4: IFC as a Supplement to Another Treatment Versus Placebo on Pain Intensity at Discharge**

Five studies were included in this comparison. Different times of discharge were used in the studies, ranging from 2 weeks to 4 weeks. Mean difference to pool the data was used. In addition, 95% CI and the random-effects model were chosen. In this comparison, 3 studies of moderate methodological quality tended to significantly favor IFC as a cointervention when compared with placebo. One study of moderate quality did not favor either IFC as a cointervention or placebo (Fig. 5, upper part). The pooled MD obtained for this analysis was 1.60 (95% CI = −0.13, 3.34). This finding indicates that although IFC as a cointervention was statistically significantly better than a placebo at decreasing pain intensity at discharge in conditions such as osteoarthritis, chronic low back pain, and fibromyalgia, IFC tended to reduce pain in these conditions when compared with a placebo condition. In addition, the heterogeneity among studies was I² = 96%, which is considered substantial according to Cochrane group guidelines. Therefore, these results should be interpreted with caution.

In this comparison, 2 studies provided follow-up data (3 months). Thus, an analysis at the 3-month follow-up was performed (Fig. 5, lower part). The pooled MD obtained for this analysis was 1.85 (95% CI = 1.47, 2.23). The 2 studies significantly favored IFC when compared with the placebo. This finding indicates that IFC as a cointervention was better than a placebo at decreasing pain intensity at the 3-month follow-up.

### Table 1. Summary of Studies Included in the Comparison: IFC Alone Versus Placebo on Pain Intensity at 1 Week and 4 Weeks

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>IFC Alone</th>
<th>Placebo</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurley et al, 2004</td>
<td>2.13</td>
<td>2.49</td>
<td>1.99 (1.99, 2.5)</td>
</tr>
<tr>
<td>Werners et al, 1999</td>
<td>0.42</td>
<td>1.35</td>
<td>0.7 (0.7, 1.49)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>115</td>
<td>114</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Heterogeneity: tau² = 0.00, I² = 0.64, df = 1 (P = .42), I² = 96%

Test for overall effect: z = 0.66 (P = .51)

**Figure 2.**
Forest plot of comparison: interferential current therapy (IFC) alone versus placebo treatment on pain intensity at 1 week and 4 weeks (data presented as change scores). IV = inverse variance, 95% CI = 95% confidence interval.

### Table 2. Summary of Studies Included in the Comparison: IFC Alone Versus Comparison Treatment on Pain Intensity at 3 Weeks and 8 Weeks

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>IFC Alone</th>
<th>Comparison</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurley et al, 2004</td>
<td>2.13</td>
<td>1.99</td>
<td>0.14 (-0.72, 1.00)</td>
</tr>
<tr>
<td>Werners et al, 1999</td>
<td>0.42</td>
<td>0.7</td>
<td>-0.28 (-0.83, 0.27)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>115</td>
<td>114</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Heterogeneity: tau² = 0.00, I² = 0.64, df = 1 (P = .42), I² = 96%

Test for overall effect: z = 0.66 (P = .51)

**Figure 3.**
Forest plot of comparison: interferential current therapy (IFC) alone versus comparison treatment on pain intensity at 3 weeks and 8 weeks (data presented as change scores). IV = inverse variance, 95% CI = 95% confidence interval.
Comparison 5: IFC as a Supplement to Another Treatment Versus Comparison on Pain Intensity at Discharge

Five studies\(^49,52,53,55,60\) were included in this comparison (Fig. 6). Different times of discharge were used, ranging from 1 day\(^55\) to 4 weeks\(^49,53,60\) to 2 months\(^52\). Two studies\(^49,52\) evaluated the effectiveness of IFC as a cointervention for knee osteoarthritis, 2 studies\(^53,60\) evaluated the effectiveness of IFC as a cointervention for shoulder pain, and 1 study\(^55\) evaluated the effectiveness of IFC as a cointervention for myofascial pain.

One study\(^55\) compared IFC plus hot packs, active range of motion, and myofascial release with 5 different treatment modalities; thus, different analyses were run in order to determine the effectiveness of IFC as a cointervention for myofascial pain.

---

### Table 1: Comparison of IFC Therapy as Supplement to Control Group

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>IFC Therapy as Supplement</th>
<th>Control Group</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
</tr>
<tr>
<td>Cheing et al.(^53) 2008</td>
<td>3.02</td>
<td>1.94</td>
<td>23</td>
<td>0.08</td>
<td>2.13</td>
</tr>
<tr>
<td>Defrin et al.(^54) 2005</td>
<td>2.1</td>
<td>0.5</td>
<td>12</td>
<td>-0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Lau et al.(^66) 2008</td>
<td>2.2</td>
<td>1.65</td>
<td>55</td>
<td>0.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td>87</td>
</tr>
</tbody>
</table>

**Heterogeneity:** tau\(^2=0.31\); \(\chi^2=6.76\), df\(=2\) (\(P=0.03\)), I\(^2=70\%\)

**Test for overall effect:** \(z=6.28\) (\(P<0.00001\))

---

### Table 2: Comparison of IFC Therapy as Supplement to Placebo

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>IFC Therapy as Supplement</th>
<th>Placebo</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
</tr>
<tr>
<td>3.1.1 Pain at discharge (1 week, 2 weeks, 4 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambito et al.(^64) 2007</td>
<td>1.9</td>
<td>0.78</td>
<td>35</td>
<td>2.6</td>
<td>1</td>
</tr>
<tr>
<td>Zambito et al.(^65) 2006</td>
<td>1.8</td>
<td>1.27</td>
<td>45</td>
<td>1.7</td>
<td>1.65</td>
</tr>
<tr>
<td>Adedoyin et al.(^67) 2002</td>
<td>6.87</td>
<td>1.2</td>
<td>15</td>
<td>4.5</td>
<td>2.79</td>
</tr>
<tr>
<td>Defrin et al.(^54) 2005</td>
<td>2.1</td>
<td>0.5</td>
<td>12</td>
<td>-0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Almeida et al.(^50) 2003</td>
<td>4.2</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td>1.82</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td>116</td>
<td></td>
<td>97</td>
</tr>
</tbody>
</table>

**Heterogeneity:** tau\(^2=3.59\); \(\chi^2=112.03\), df\(=4\) (\(P<.00001\)), I\(^2=96\%\)

**Test for overall effect:** \(z=1.81\) (\(P=0.07\))

<table>
<thead>
<tr>
<th>3.1.2 Pain up to 3-month follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zambito et al.(^64) 2007</td>
</tr>
<tr>
<td>Zambito et al.(^65) 2006</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
</tr>
</tbody>
</table>

**Heterogeneity:** tau\(^2=0.00\); \(\chi^2=0.02\), df\(=1\) (\(P=0.66\)), I\(^2=0\%\)

**Test for overall effect:** \(z=9.57\) (\(P<0.00001\))

---

**Figure 4.**

Forest plot of comparison: interferential current therapy (IFC) as a supplemental treatment versus control treatment on pain intensity at 1 day and 4 weeks (data presented as change scores). IV=inverse variance, 95% CI=95% confidence interval.

**Figure 5.**

Forest plot of comparison: interferential current therapy (IFC) as a supplemental treatment versus placebo treatment on pain intensity at 1-week, 2-week, 4-week, and 3-month follow-ups (data presented as change scores). IV=inverse variance, 95% CI=95% confidence interval.
mine the effect of IFC as a cointervention when compared with all of these modalities (sensitivity analysis). We used the MD to pool the data. In addition, 95% CI and the random-effects model were chosen. In this comparison, no clear trend favoring either IFC as a cointervention or the comparison treatments was observed for any of the analyses performed (Fig. 6). The pooled MD obtained for the various analyses was 0.55 (95% CI=−0.33, 1.44). The mean difference indicated that IFC as a cointervention was no better than other conventional interventions such as exercise, transcutaneous electrical nerve stimulation, or ultrasound plus hot packs at decreasing pain intensity at discharge.

### Discussion

#### Analysis of the Analgesic Effect of IFC Alone

The results of this meta-analysis indicate that IFC applied alone as an intervention for musculoskeletal pain is not significantly better than placebo or comparison therapy (ie, manual therapy, traction, massage) at discharge from physical therapy treatment. However, few included studies (27%) examined the clinical analgesic effectiveness of IFC as a single therapeutic modality, and most did not focus on a specific musculoskeletal disorder. We also observed differences in length of treatment (ie, 1, 2, 3, and 8 weeks) and type of pain (ie, acute or chronic), indicating no consensus on optimal treatment parameters, which potentially contributed to the nonsignificance of the results.

#### Analysis of the Analgesic Effect of IFC as Part of a Multimodal Protocol (Cointerventions)

An important factor in this meta-analysis was the inclusion and analysis of studies including the application of IFC as a cointervention in a multimodal treatment protocol. This decision was clinically sound because IFC is used mainly as an adjunct treatment. The results of this study indicate that IFC as a cointervention is significantly better than control and placebo for reducing chronic musculoskeletal pain at discharge and at 3 months posttreatment, respectively. The pooled effect for IFC as a cointervention versus control was 2.45 on the VAS (95% CI=1.69, 3.22). According to some authors, this change is considered a clinically meaningful effect for acute painful conditions. However, in chronic pain, a more stringent criterion seems to operate because a relative pain reduction of 50% or at least 3 cm on a VAS has been recommended for detecting a clinically successful pain reduction. In addition, when IFC as a cointervention was compared with placebo at discharge, there was no statistically significant difference between the groups. At 3-month follow-up, IFC as a cointervention obtained a better effect on the VAS, although less pronounced than when compared with a control group (pooled effect=1.85, 95% CI=1.47, 2.23). Thus, it seems that although IFC applied as a cointervention may have a modest analgesic effect, the magni-
tude of the effect is not large enough to be considered clinically relevant when compared with placebo or comparison interventions.

Because this is the first meta-analysis looking at the analgesic effect of IFC, direct comparisons cannot be made. In a previous study, Johnson and Martinson\textsuperscript{122} concluded that transcutaneous electrical nerve stimulation, used mainly as an isolated intervention, provided significant pain relief when compared with a placebo intervention in a variety of chronic musculoskeletal conditions. Although methodological differences are present between both meta-analyses, some similarities such as the final sample sizes included, the focus on chronic musculoskeletal conditions, and clinical heterogeneity make the comparison between these 2 meta-analyses worth considering.

Some factors regarding IFC treatment may have accounted for the modest effect size observed. For example, although the stimulation of small-diameter fibers has been demonstrated to produce a more positive effect for chronic pain when compared with the stimulation of large-diameter fibers (Aβ),\textsuperscript{54} the included studies, regardless of the type of pain, used stimulation parameters that were related mainly to the stimulation of Aβ fibers and the pain gate mechanism.\textsuperscript{11,47–50,52,53,56–58,61,62} Although the stimulation of large-diameter fibers is acknowledged to produce a fast onset of analgesia, an important shortcoming is its brief analgesic effect.\textsuperscript{123–125} Thus, it is plausible that in chronic pain, which was the dominant condition in this review, the effectiveness of IFC under these stimulation parameters may have been attenuated, resulting in a small effect in reported pain reduction. Further research is needed to evaluate the effect of noxious stimulation (eg, small-diameter fibers) on IFC effectiveness, especially in chronic pain.

Additionally, IFC has not been applied using a consistent treatment protocol. For example, similar AMF settings (≥80 Hz) were considered for treating either acute\textsuperscript{56,57} or chronic\textsuperscript{47,50,53,55,64,65} conditions. Moreover, under the same condition (eg, osteoarthritis), the authors inconsistently applied fixed AMF frequencies (ie, 80 Hz)\textsuperscript{49} or sweep AMF frequencies (ie, 1–150 Hz, 30–60 Hz, 0–100 Hz).\textsuperscript{52,54,59} Although experimental evidence has challenged the role of AMF as the main analgesic component of IFC,\textsuperscript{56,57,85,126} inconsistency in the use of this parameter in clinical settings warrants consideration. Based on the current evidence, recommendations for optimal dosage when using IFC are not clear. It seems, however, that clinical evidence supports the fact that AMF should not be the most important parameter for clinical decision making. This fact has been corroborated by recent experimental evidence as well.\textsuperscript{80} Instead, the use of a sensory level of intensity appears to be a consistent factor for the majority of the studies. Although some variations in the number of treatments and the treatment time exist, it seems that 10 to 20 minutes of application for 2 to 4 weeks with a total of 12 sessions is the most common treatment protocol for IFC.\textsuperscript{47–51,53,54,59,60,62,64,65}

In this systematic review, 16 out of 20 studies evaluated the role of IFC in chronic rather than acute pain. Based on this fact, it seems that IFC has been applied more often in the management of chronic painful conditions. Interestingly, and apparently in contrast to current clinical practice in which IFC is used mostly for short-term pain relief, this meta-analysis provided information regarding potential positive long-term benefits from IFC.\textsuperscript{64,65}

**Adverse Effects**

An important safety feature when applying electrotherapy modalities is the report of adverse effects. Although IFC is considered a safe modality, its application has been associated with local adverse effects such as blisters, burns, bruising, and swelling.\textsuperscript{127,128} Interestingly, only 3 studies\textsuperscript{52,56,60} included reports of adverse effects as a result of IFC treatment. Two studies\textsuperscript{56,60} reported no complications, and one study\textsuperscript{52} reported the presence of muscle soreness in one subject. Reporting adverse effects must be mandatory, not only for the safety of patients, but also for the professional integrity of therapists.

**Methodological Elements Affecting Observed Effect**

Even though the quality of the trials appraised generally was moderate, there are some methodological biases common to these studies that could have had an impact on the results. Selection bias could have existed, as only 9 trials reported appropriate randomization and only 5 trials reported concealment of allocation. Another potentially important bias was the lack of blinding, especially of the patients (9 studies) and assessors (11 studies). The outcome measure for this meta-analysis was pain, which is a subjective outcome and dependent on the subject’s report. Trials without appropriate randomization, concealment of allocation, and blinding tend to report an inaccurate treatment effect compared with trials that include these features.\textsuperscript{129–131}

Other potential biases that could have affected the observed effects were the lack of an appropriate sample size (only 5 of the trials reported adequate sample size) and the inappropriate handling of withdrawals and dropouts (only 11 trials used intention-to-treat analysis). Reporting clinical significance of results has become a relevant issue to dem-
Interferential Current Therapy in Management of Musculoskeletal Pain

Interferential current therapy demonstrated the effectiveness of an intervention. Clinical significance provides the clinician with adequate information regarding the clinical impact of an intervention because it can identify when a meaningful change is produced.\textsuperscript{132} Despite this message, the report of clinically meaningful changes in the present study was largely neglected, with only 3 studies including this component.\textsuperscript{56,57,62}

The present study used a compilation of items from all of the scales used in the studies in the physical therapy literature. Although some of the scales used in physical therapy (ie, PEDro, Jadad) have been validated in some way, our recent analysis of health scales used to evaluate methodological quality determined that none of these scales are adequate for that use alone.\textsuperscript{42} Therefore, it was decided that all of these scales would be used to assess methodological quality, and we used a compilation of items to provide a comprehensive and sensitive evaluation of the quality of individual trials. However, further research investigating methodological predictors for determining trial quality in physical therapy is needed.

Summary of Evidence
As an isolated treatment, IFC was not significantly better than placebo or other interventions. Conversely, when included in a multimodal treatment plan, IFC displayed a pain-relieving effect (VAS reduction of over 2 points) compared with a control condition.

Strengths
This meta-analysis is the first systematic investigation regarding the pain-reducing effectiveness of IFC on musculoskeletal pain. A comprehensive search was made of all the published research in this area over a wide range of years (1950–2010). In addition, authors were contacted in an attempt to have complete information about the selected studies. The 20 RCT articles included in this review covered a broad spectrum of acute and chronic musculoskeletal conditions. Interferential current therapy was analyzed as isolated intervention, as well as part of a multimodal treatment plan. In addition, the study provided multiple analyses, including the comparison between IFC and placebo, the comparison between IFC and control, and IFC contrasted to different types of interventions.

Limitations

- **Outcome level.** A main limitation of this meta-analysis is the presence of clinical heterogeneity in the study population in most of the comparisons, casting some doubt on the validity of our results.
- **Study and review level.** A potential limitation is the omission of non–English-language publications; however, English is considered the primary scientific language. It also has been reported that language-restricted meta-analyses only minimally overestimate treatment effects (~2% on average) compared with language-inclusive meta-analyses.\textsuperscript{114} Therefore, language-restricted meta-analyses do not appear to lead to biased estimates of intervention effectiveness.\textsuperscript{133,134} Applicability of results about the isolated effect of IFC on musculoskeletal pain also is limited, as only 4 studies addressed this issue. Another important limitation is that this study included only pain as an outcome measure. It would be important to know whether outcomes such as disability or function could have been modified by the application of IFC.

Conclusions

**Implications for Practice**
Interferential current therapy included in a multimodal treatment plan seems to produce a pain-relieving effect in acute and chronic musculoskeletal painful conditions compared with no treatment or placebo. Interferential current therapy combined with other interventions was shown to be more effective than placebo application at the 3-month follow-up in subjects with chronic low back pain. However, it is evident that under this scenario, the unique effect of IFC is confounded by the impact of other therapeutic interventions. Moreover, it is still unknown whether the analgesic effect of IFC is superior to that of these concomitant interventions.

When IFC is applied alone, its effect does not differ from placebo or other interventions (ie, manual therapy, traction, or massage). However, the small number of trials evaluating the isolated effect of IFC, heterogeneity across studies, and methodological limitations identified in these studies prevent conclusive statements regarding its analgesic efficacy.

**Implications for Research**
Because only 4 studies that evaluated the isolated effect of IFC were identified, and these studies had mixed results, further research examining this issue is needed, ideally in homogeneous clinical samples. Further research also is needed to study the effect of IFC on acute painful conditions. Also of interest would be the study of the effect of IFC in chronic conditions using a theoretical framework for the selection of parameters associated with suprasegmental analgesic mechanisms (ie, noxious stimulus) instead of sensory stimulation.

Mr Fuentes, Dr Armijo Olivo, and Dr Gross provided concept/idea/research design and writing. Mr Fuentes and Dr Armijo Olivo provided data collection and analysis. Mr Fuentes provided project management. Dr Magee and Dr Gross provided consultation (including review of manuscript before submission).

This study was supported by the Alberta Provincial CIHR Training Program in Bone and
Interferential Current Therapy in Management of Musculoskeletal Pain

Joint Health, an Izaak Walton Killam scholarship to Dr Armijo Olivo from the University of Alberta, the Provost Doctoral Entrance Award to Mr Fuentes from the University of Alberta, the Canadian Institutes of Health Research, the government of Chile (MECE-SUP Program), the University Catholic of Maule, Chile, and the Physiotherapy Foundation of Canada through an Ann Collins Whitmore Memorial Award to Dr Armijo Olivo.

This article was received October 13, 2009, and was accepted May 14, 2010.


References

Interferential Current Therapy in Management of Musculoskeletal Pain


1236 Physical Therapy Volume 90 Number 9 September 2010
Interferential Current Therapy in Management of Musculoskeletal Pain


117 Kelly AM. Does the clinically significant difference in visual analogue scale pain scores vary with gender, age, or cause of pain? Acad Emerg Med. 1998;5:1086–1090.


Interferential Current Therapy in Management of Musculoskeletal Pain


